ORNL/TM-2009/120

COMPLEX VERSION OF HIGH PERFORMANCE
COMPUTING LINPACK BENCHMARK (HPL)

R. F. Barrett, Oak Ridge National Laboratory
T. Chan, Chinese University of Hong Kong
E. F. D’ Azevedo, Oak Ridge National Laboratory
E. F. Jaeger, Oak Ridge National Laboratory
K. Wong, University of Tennessee
and R. Wong, Chinese University of Hong Kong

Date Published: April, 2009

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6367

managed by

UT-Battelle, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge:

Web Site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from
the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.fedworld.gov

Web site: http://www.ntis.gov/support/ordernowabout.htm

Reoports are avilable to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE), and International Nuclear Inforamtion System (INIS) representatives from the following
sources:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: reports @adonis.osti.gov
Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States nor any agency
thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

Contents

LIST OF FIGURES v
ACKNOWLEDGMENTS viii
ABSTRACT ix
1 Introduction 1
2 Related Work 3
3 ScaLAPACK and HPL 4

3.1 The linear systemin AORSA2D 6
4 Conversion of HPL to complex coefficients 8

4.1 Details oL e e e e 9
5 Experimental platforms 14
6 Performance results 16
7 Summary 18

References 18

iii

w

List of Figures

Solution time for ScaLAPACK for 350 x 350 ITER simulation.
Global and distributed views of two-dimensional block cyclic distribution of matrix
across 2 x 3 logical grid of processors.
ScaLAPACK software structure. oot e
AORSA computational spaces. The axes represent the grid resolution. The square region
is the Fourier space, while the shaded region represents the fusion energy device within
thatregion. L.
XT4 architecture

b A W N =

List of Tables

Summary of Computing Platforms o 0. 15
Performance (in GFLOPS) of HPL (zhpl) and ScaLAPACK (xzlu). 16
Example problem sizes and associated linear system dimensions 16
Performance of ScaLAPACK and HPL for a set of ITER simulations. 17
Additional Files list L 22

vii

ACKNOWLEDGEMENTS

We express our appreciation to the reviewers of the version of this paper that appeared as [6]. Their
careful reading and suggestions significantly improved the presentation of this work.

This research is sponsored by the Office of Advanced Scientific Computing Research; U.S. Depart-
ment of Energy. The work was performed at the Oak Ridge National Laboratory, which is managed by
UT-Battelle, LLC under Contract No. DE-AC05-000R22725. This research used resources of the Center
for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No. DE-AC05-000R22725. Summer Internships
for T. Chan and R. Wong were supported by the Department of Mathematics, The Chinese University
of Hong Kong (CUHK). Internship opportunity was provided by the Joint Institute for Computational
Sciences (JICS), the University of Tennessee, and the Oak Ridge National Laboratory.

viii

ABSTRACT

This paper describes our effort to enhance the performance of the AORSA fusion energy simulation
program through the use of High Performance LINPACK (HPL) benchmark, commonly used in ranking
the top 500 supercomputers. The algorithm used by HPL, enhanced by a set of tuning options, is more
effective than that found in the ScaLAPACK library. Retrofitting these algorithms, such as look-ahead
processing of pivot elements, into ScaLAPACK is considered a major undertaking. Moreover, HPL is
configured as a benchmark, and only for real-valued coefficients. We therefore developed software to
convert HPL for use within an application program that generates complex coefficient linear systems.
Although HPL is not normally perceived as part of an application, our results show the modified HPL
software brings a significant increase in performance of the solver when simulating the highest resolution
experiments thus far configured, achieving 87.5 TFLOPS on over 20,000 processors on the Cray XT4.

ix

1 Introduction

The next step toward fusion as a practical energy source is the design and construction of ITER (www.
iter.org), a device capable of producing and controlling the high performance plasma required for
self-sustaining fusion reactions, i.e. “burning plasma.” Computer simulation is providing significant
insight into how this can be accomplished [5]. For example, the AORSA [20, 21, 22] (All ORders
Spectral Algorithm) simulation program, developed within the Scientific Discovery through Advanced
Computing (SciDAC) Numerical Computation of Wave Plasma-Interactions in Multi-dimensional Sys-
tems project' has demonstrated how electromagnetic waves can be used for driving current flow, heating
and controlling instabilities in the plasma. AORSA provides high-resolution, two-dimensional solutions
for mode conversion and high harmonic fast wave heating in tokamak plasmas.

The computer program takes advantage of new computational techniques for massively parallel com-
puters to solve the integral form of the wave equation in two dimensions without any restriction on
wavelength relative to orbit size, and with no limit on the number of cyclotron harmonics retained.

Parallelism in AORSA is centered around the construction and solution of a large N X N system of
complex linear equations of the form Ax = b. For problems of interest, the increasingly better physics
model and higher resolution of the mode conversion layer generates linear systems exceeding rank N =
500,000. Thus it is the solution of these systems, with computational requirements of O(N?) that presents
the greatest computational challenge for managing runtime of an AORSA simulation.

Originally configured for the general solver (subroutine PZGESV) provided by ScaLAPACK [10, 8],
excellent performance was achieved on on several computing platforms, including an IBM Power3-
based computer at NERSC (named Seaborg), and an SGI Altix 3800 (Ram), Cray X1 (Phoenix), and a
Cray XT3 (Jaguar) located at the at National Center for Computational Sciences (NCCS) at Oak Ridge
National Laboratory (ORNL). However, as the scale of the target simulations increased corresponding
to the increased scale of available computing resources, performance began to diminish. In particular,
early evaluation of AORSA2D on the Cray XT4 (Jaguar, upgraded from an XT3) using the vendor tuned
ScalLAPACK library achieved a lower than expected performance of about 38% of peak performance on
over 10,000 cores (illustrated in Figure 1). This expectation is in comparison to the realized performance
of the High Performance LINPACK (HPL) benchmark [13, 17], the metric by which the world’s fastest
computers are ranked (www.top500.org), that achieved 86% of peak on the dual-core configuration of

Jaguar, and 79% of peak on the recently upgraded quad-core configuration?.

IWeb site for Center for Simulation of Wave-Plasma Interactions (CSWPI) is www . scidac. gov/fusion/CSWPI.html.
2This value is expected to increase as the machine matures.

www.iter.org
www.iter.org
www.top500.org
www.scidac.gov/fusion/CSWPI.html

500

10 200

Wall Clock Time (mins)
50

2000 5000 104 2x104
Number of Processors

Fig. 1: Solution time for ScaLAPACK for 350 x 350 ITER simulation.

HPL implements sophisticated algorithms such as look-ahead processing of pivot elements, hybrid
left-looking and right-looking factorization algorithms, and methods to reduce communication latency
by combining several messages. More details of the similarities and difference between ScaLAPACK
and HPL follows. We considered retrofitting similar look-ahead algorithms into ScaLAPACK to be a
major undertaking. Our approach instead was to pursure adaptation of the freely available (though with
license and copyright) version of the HPL benchmark for use by AORSA. We decided on using a semi-
automatic translation process to minmize human errors and to more easily incorporate enhancements in
future versions of HPL. In this paper we report on our efforts of the adaptation and the resulting gains in
performance.

After a discussion of related work, we begin with a comparison of ScaLAPACK and HPL, and
describe how they are used within AORSA. Next, we describe the conversion of HPL to accept (double
precision) complex coefficient linear systems. We then compare the performance of ScaLAPACK and
HPL, within the context of AORSA simulations, on two distinct computing architectures. Lastly, we
offer our conclusions and suggestions for further improvements for the performance for solving the

linear system in AORSA.

2 Related Work

Solving dense linear systems of equations has been an area of focus of computational science from its
beginning. Several computer vendors provide such capabilities within some form of a tuned scientific
library, such as IBM’s ESSL, Cray’s LibSci, Intel’s Math Kernel Library (MKL), and SGI’s SCSL. The
most popular freely available library is LAPACK [3]. (The GNU Scientific Library does not provide
Fortran interfaces to their algorithms.) Further, and even more commonly, vendors provide implementa-
tions of the BLAS [23, 15, 14], which are typically used as the computational building blocks for linear
solvers. They can be tuned to take significant advantage of the computing system capabilities. Highly
tuned freely available versions include [19, 29].

Several computer vendors, including those listed above, provide parallel processing capabilities for
solving dense linear systems of equations. Our understanding is that these implementations typically
are based on ScaLAPACK algorithms. PLAPACK [27] uses the same algorithm as ScaLAPACK, but
provides an interface designed to ease the burden of distributing the equations to 2D block cyclic format.
(This task is similarly accomplished in AORSA using parallel BLAS (PBLAS) [11] routine PZGEADD.)

Cray provides a mixed-precision algorithm [9] in their iterative refinement toolkit, a component of
their LibSci library. As it is also based on the ScalLAPACK factorization algorithm, we are in the process
of implementing the mixed-precision algorithm using HPL, which also requires the code conversion
techniques described in this paper. We intend to describe this work in a subsequent report.

We are not aware of any previous attempts to create a user interface to HPL functionality, nor are we
aware of previous work that would have simplified the software conversion of HPL to accept complex
coefficients, nor to create user interfaces from a non-externally callable program. We used commonly
available tools such as Awk [1] and shell scripts for their simplicity. Other scripting languages, such as
Perl [28] or Python [24], could also be used. C++ templates and function overloading might be desirable
for creating a more general implementation. We used C99 for portability, expediency, simplicity, and

native support of complex numbers, in addition to the fact that HPL is written in standard C.

A11|A12| A13||A14|A15| A16||A17|A18] [A11[A14]A17[[A12[A15[A15][413] 416
Ao1|A22|A23|| Aoy |A2s|Asesl| A27 |A2s A3z1|A3zq|Azy A32 A35 A38 A33| Asg
A31|A32| A33||A34|Ass| A36||A37|Asg| |As1|Ase|As7||As2|Ass|Asg|| As3| Ase
Ay |Ap2|As3|| Agg |Aus|Age|| Ba7 |Ags| |A71|A74|A77||A72|A75|A78|| A73 | A6
As1|As2| As3||Asq|Ass | Ase||As7|Asg| | Ao1 |Aog|Ao7 ||A22|A2s|A2s|| A2z |Aze
A1 |A62 | Ac3 || Aea |Abs | Ass|| Re7 |Ass| | Aat [Aaa|Aar |Agz|Ags|Ags||Aaz|Ade
A71|A72| 473 ||Avg A75 A6 A77 A78 Ag1 |Aea | As7 || A62|Abs |Ass || A3 | Ass

Mgt |Agr|Agz||Aga |Ags|Ags|l As7 [Asg| | Ast|Asa|As7 ||As2|Ass|Ass|Ass|Ase
(a) Global view (b) Distributed view

Fig. 2: Global and distributed views of two-dimensional block cyclic distribution of matrix across 2 x 3
logical grid of processors.

3 ScaLAPACK and HPL

Both ScaLAPACK and HPL require a two-dimensional block-cyclic data distribution?, illustrated in Fig-
ure 2. Both are renowned for portability across a broad variety of parallel processor-based architectures,
attributable to their use of standard language constructs (ScaLAPACK using Fortran, HPL using C) and
MPI [25]. Both solve the linear equation (Ax = b) by first factoring the matrix into upper- and lower-
triangular factors,

Ax=PLUx = b, (D)

then compute the solution vector using forward then backward substitution.

HPL is a portable reference implementation of the High Performance LINPACK Benchmark [17].
HPL generates and solves a dense linear system with double precision real-valued coefficients. ScalLA-
PACK includes a subset of LAPACK functionality [3] adapted for use on parallel architectures: the so-
lution of linear systems, linear least squares problems, and eigenvalue problems, for dense, banded, and
triangular matrices. Widely accepted by the scientific computing community, ScaLAPACK (and its com-
ponent software*) is usually provided by vendors on most architectures (with examples discussed above).
ScaLAPACK was designed to mimic LAPACK in the use of blocked algorithms [16]. ScaLAPACK
does not call MPI directly but uses PBLAS and the Basic Linear Algebra Communication Subroutines
(BLACS) to achieve parallelism and for interprocessor communication. While this functional compo-

nent structure is an effective software development strategy (see Figure 3), it enforces a synchronous

3This decomposition ensures a balanced load across the parallel processes throughout execution, and enables the use of level
3 BLAS functionality. The latter allows for strong data re-use, a requirement for achieving strong performance on cache-based
processors.

4LAPACK, BLAS [23, 15, 14], and BLACS [18].

ScalLAPACK

Global

Fig. 3: ScaLAPACK software structure.

configuration for its algorithms. That is, because the algorithms used in ScaLAPACK are patterned after
LAPACK block algorithms, each parallel process must participate in the same call to ScaLAPACK or
PBLAS. For example, a call to PZGEMM (double precision complex matrix multiplication) requires that
all processors participate even if they have no data associated with the computation. The subsequent call
to PBLAS cannot proceed until all processors have completed the previous call to PBLAS. This bulk
synchronous parallel paradigm [7] simplifies code development but introduces unnecessary barriers.
Since HPL was designed to be a benchmark, the HPL driver has several parameters to select differ-
ent variants of the basic LU factorization algorithm with row pivoting. HPL offers left-looking, right-
looking, and Crout recursive variants. HPL uses a block panel algorithm and the panel factorization is on
the critical path. Sending the pivot information ahead (also called look ahead) to the next processor before
performing updates to the trailing matrix is one way to reduce this delay [26]. HPL reduces communica-
tion overhead by combining several operations such as pivot search, row swap, and broadcast operations
all integrated into a single communication step. Moreover, to achieve the best performance in com-
munication, HPL implements six variants of broadcast operations: increasing ring, modified increasing
ring, increasing two-ring, modified increasing two-ring, bandwidth-reducing, and modified bandwidth
reducing. There are many other options that influence the memory alignment, how L and U factors are
stored, and different ways of performing row swaps. The details of the various algorithmic options of
HPL are documented in [17, 12]. Significant experimentation with these options is constrained by our
limited access to Jaguar at the necessary scale. Thus for our purposes, we configured HPL with options

that were used in the contribution to the TOP500 list.

0 100 200 300

Fig. 4: AORSA computational spaces. The axes represent the grid resolution. The square region is the
Fourier space, while the shaded region represents the fusion energy device within that region.

3.1 The linear system in AORSA2D

AORSA models the heating response of plasma due to radio frequency (RF) waves. The plasma state is

described by a distribution function f;(r,v,7). For RF application, the fast wave time scale leads to effec-

tive approximation of the electric field, magnetic field and distribution function as a time-averaged equi-

librium part (Eq, B, f°) and a rapidly oscillating time-harmonic part, (E(r) exp(—iot), B(r) exp(—iwt), 1 (r,v)exp(—iot)).
The time harmonic terms satisfy the generalized Helmholtz equation,

o’ i .
—VxVxE+ ? <E + (l)S()Jp> = — iU antenna (2)

Jp(r,1) :/;dt’Zs/dr'G(f?(E)7r,r’,t,t’)-E(r’,t/) 3)

where o is the frequency of wave, J, is the plasma current induced by the wave fields, &(o et is
the plasma conductivity kernel.

Fourier modes are used as basis functions to represent the electric field. Collocation on a M x M
rectangular grid is used to construct a complex linear system of size N =3 x M x M. A reduced linear
system can be constructed by transforming the linear system (using Fast Fourier Transform) into the real
physical space and consider only collocation points within the plasma region (illustrated in Figure 4).
Typically about 20-30% of grid points are in the vacuum region. Thus the memory required still grows
as O(M*) and computation work grows as O(M°®).

Another version, AORSA3D, provides fully three-dimensional (3D) solutions of the integral wave

equation for minority ion cyclotron heating in three dimensional stellarator plasmas. By combining
multiple periodic solutions for individual helical field periods, it is possible to obtain complete 3D wave
solutions valid over the entire volume of the stellarator for arbitrary antenna geometry. AORSA3D will

require even higher computational resources.

4 Conversion of HPL to complex coefficients

The HPL code, developed in 2001, was written using the C programming language. It was designed
to solve a randomly generated dense linear system using LU factorization in 64-bit (double precision)
arithmetic on distributed-memory computers. We modified the HPL source code to solve a given double
precision complex linear system to replace the ScaLAPACK routine PZGESV. HPL provides options for
improving performance based on architecture capabilities. Options include the depth of the selected
look-ahead algorithm, the use of hybrid left-looking and right-looking algorithms for panel update, the
topology of the logical processor grid, and several variants of coding for efficient message passing in
MPL

There were two main issues in the conversion of HPL to mimic the functionality of complex solver
PZGESV in ScaLAPACK. The first was the conversion of the C code to use double-precision complex
data type and the second was to provide a Fortran callable interface to the HPL solver that remained
compatible with ScaLAPACK and PBLAS. (PBLAS functionality is used in AORSA to distribute the
equations to the required 2-D block cyclic distribution.)

Interface code was written to smoothly couple HPL with ScaLAPACK. For example, HPL and
ScaLAPACK must be initialized with the same MPI communicator and the same context of the logi-
cal processor grid. HPL stores the right hand side vector as an extra column and uses an extra row to
hold a temporary vector. Moreover, HPL attempts to increase memory performance by aligning data
structures to start on a cache line. Therefore, the interface code queries HPL for the amount of storage
required before allocating the array in the Fortran code. During the panel factorization process, HPL
performs the row pivoting and rearrangement only to the right unfactored part of the matrix for higher
efficiency. The resulting LU factors are not strictly identical to the factorization obtained by PZGETRF in
ScaLAPACK. Thus after HPL has completed, the interface code extracts the pivot vector and performs
an extra pass over the LU factors to rearrange the data to be compatible with ScaLAPACK. For the needs
of the fusion application, the righ hand side vector was solved only once and this extra rearrangment was
not needed.

The C99 language standard, which defines double-precision complex data types and complex arith-
metic expressions, is supported by the Portland Group pgcc compiler on the Cray and gcc compiler on
the Linux cluster. Strict type checking on function prototypes by the gcc compiler aided identification
of code that required modification. Awk and shell scripts were used to generate a complex version of
HPL in a semi-automatic manner. The number of files that were modified is significant: 68 of the 79 files

(one function per file in general) in the source tree, 6 of the 17 files in the test programs, and 13 of the

19 header files (*.h) were modified. Those not needing modification were typically involved in matrix
indexing requirements or general process management (e.g. HPL_Abort and HPL_grid_info).

In general the changes were minor, mostly changing keyword double to zcomplex, which motivated
our use of an automated approach for making the necessary modifications. However, it was important to
manually examine each function in order to determine that complexity was overlooked. Direct interven-

tion on a small number of routines was still required.

4.1 Details

In this section we present the details of the conversion and list the special cases not handled by the shell
scripts. Additional details on this work, including our use of Awk and shell scripts, and information
for downloading the software, can be found at www.nics.tennessee.edu/sites/default/files/

HPL-site/home.html.

1. File and function name
If a file or function has been modified, then its name will be changed subsequently by following the
naming rules in ScaLAPACK. For example, the random number generator HPL_rand is renamed
to HPL_zrand, the main header file hpl .h is changed to zhpl .h, and the routine HPL_pdgesv is

renamed to HPL_pzgesv.

2. Variable data-type
Nearly all the type declaration of the variables to double are changed to double complex. For

example, the variable declaration of src/pgesv/HPL_rollN.c

void HPL_rollN (

HPL_T_panel * PBCST,
double * U,

int =* IFLAG,
HPL_T_panel * PANEL,

is changed to

void HPL_zrollN (

www.nics.tennessee.edu/sites/default/files/HPL-site/home.html
www.nics.tennessee.edu/sites/default/files/HPL-site/home.html

HPL_ZT _panel * PBCST,

double complex * U,
int =* IFLAG,
HPL_ZT_panel * PANEL,

The datatype handles used in MPI communication are also changed correspondingly so that MPI_Send (

U, ---, MPI_DOUBLE, ---) is changed to MPI_Send(U, ---, MPI_DOUBLE_COMPLEX, ---).

3. Function return datatype
The datatype returned by a function is changed if it is determined to return a double-complex num-
ber. In testing/matgen/HPL_rand.c:
double HPL_rand (void)
is changed to
double complex HPL_zrand (void)
in testing/matgen/HPL_zrand.c. Others, such as those returning a norm, a time value, a co-

ordinate, or processor number, remain unchanged.

4. Miscellaneous

(a) Operations on Complex Number

The original absolute value function Mabs is replaced by the complex norm function, cabs.
The code in include/hpl_misc.h:

#define Mabs(a_) (((a_)< 0) 7 -(a_):(al))
is modified to

#define Mabs(a_) cabs((double complex) a_)
in include/hpl_zmisc.h
A pair of complex numbers cannot be compared using ‘>’, ‘<’, min or max functions. Their
norms are compared instead. For example, in the file src/grid/HPL_zmin.c

b[i] = Mmin(a[il, b[il);

is modified to

if (Mabs(al[il) < Mabs(b[i])) blil=alil;

10

(b)

(©)

(d)

(e

where Mabs is defined to be the complex norm. This is not the most general code replacement

but it works in this case.

Multi-datatype

HPL declares a few integer values to be of type double so that they can be packed into
message buffers with type double data, thus reducing message traffic. (Examples include
matrix row indices and logical process grid coordinates.) In this conversion, then, those
values must be declared to be type double complex. For instance, the local work space
WORK and Wwork in src/pfact/HPL_pzmxswp.c are used to hold multiple data types. We
need to hand-edit the prototype in communications. Here is the explanation of the variable

WORK:

* WORK (local workspace) double complex *

* On entry, WORK is a workarray of size at least 2 * (4+2*NO).
* WORK[0] contains the local maximum absolute value scalar,
* WORK[1] contains the corresponding local row index, WORK[2]
* contains the corresponding global row index, and WORK[3] is
* the coordinate of process owning this max. The NO length max
* row is stored in WORK[4:4+NO-1]; Note that this is also the
* JJth row (or column) of L1. The remaining part of this array
* is used as workspace.

CBLAS support

Function of Complex BLAS (CBLAS) are called instead of the double-precision BLAS. For
example, F77DSWAP is modified to be F77ZSWAP and dger_ is modified to be zgeru_. Notice

that we need to distinguish betwen transpose and conjugate transpose operations.

Random number generator

A new parallel random matrix generation algorithm is needed, as we need two double-
precision numbers to construct one double-complex number. Here we use the same al-
gorithm as ScaLAPACK PZMATGEN and double the variables jump2, jump3, jump7 in
testing/pmatgen/HPL_pdmatgen.c.

Performance calculation (GFLOPS)

The multiplication of two complex numbers requires four real multiplies and two adds and

11

the sum of two complex numbers requires two real adds. For the large problem sizes (N >
10000) considered, the performance calculation of GFLOPS in HPL is simply estimated to
be (4 x 1072/3)N3 /t, where N is the size of the matrix, ¢ is the computation time in seconds.
A more precise formula is available in the appendix of [4].

(f) Data-Type Choice
We prepare HPL to work on more data-types, not only double complex, but also float
and float complex by providing extra choices on the variable DTYPE. For example, in

src/grid/HPL_zmin.c

if (DTYPE == HPL_DOUBLE_COMPLEX)

{
const double complex *a = (const double complex *) (IN);
double complex *b = (double complex *) (INOUT);
for(i = 0; 1 < N; i++) if (Mabs(al[i]l)<Mabs(b[i])) blil=alil;
}
else if (DTYPE == HPL_COMPLEX)
{
const float complex *a = (const float complex *) (IN);
float complex *b = (float complex *) (INOUT);
for(i = 0; i < N; i++) if (Mabs(al[i])<Mabs(b[i])) blil=alil;
¥
else if (DTYPE == HPL_FLOAT)
{

5. Unchanged

(a) Timing related variables/routines
Timing routines and variables in the folders testing/ptimer/ and testing/timer/ are
unchanged. They evaluate the computation time, and use double-precision numbers indepen-

dent of datatype.

(b) Norm related variables

For example Anorm1 in HPL_pztest.c.

12

(¢) Residue variables

For example resid0 in testing/ptest/HPL_pztest.c.

13

6.4 GB/sec direct connect
HyperTransport

2-8GB

12.8 GB/sec direct
connect memory
(DDR 800)

Cray
SeaStar2+
Interconnect

(a) AMD quad-core Opteron (Budapest) processor (b) XT4 network

Fig. 5: XT4 architecture

5 Experimental platforms

Experiments were performed on two widely differing scales of compute power. In this section we de-
scribe those computing architectures.

The small platform is a Linux cluster named Organon, consisting of 9 Sun V20z servers, with one
serving as the primary file server. Running the Linux operating system, the Dual AMD Opteron 2.6 GHz
processors are connected by a Cisco Giga-bit switch®.

The large platform is a Cray XT4, named Jaguar, located at the NCCS at ORNL. Jaguar is one of the
largest computers in the U.S. Department of Energy’s (DOE’s) Office of Science and is the major com-
puting resource for DOE’s Innovative and Novel Computational Impact on Theory and Experiment (IN-
CITE) program®. It consists of 7,832 AMD Opteron 2.1 GHz quad-core processors (illustrated in Figure
5(a)) connected using SeaStar2 through HyperTransport (illustrated in Figure 5(b)) in a 3-dimensional
torus topology. The operating system is a customized version of Linux, named Compute-Node Linux
(CNL)". This configuration provides 262 TFLOPS with 60 TBytes of memory. Early experiences with

this configuration are reported in [2]. Details of both computers are summarized in Table 1.

5
6

www.cuhk.edu.hk/itsc/compenv/research-computing/organon
www.er.doe.gov/ascr/incite/index.html
7Soon to be re-named Cray Linux Environment (CLE).

14

www.cuhk.edu.hk/itsc/compenv/research-computing/organon
www.er.doe.gov/ascr/incite/index.html

Table 1: Summary of Computing Platforms

Organon Jaguar

CPU Dual AMD Opteron 252, 2.6 GHz Quad-core AMD Opteron (Budapest), 2.1 GHz
IMB L2, 1GHz HyperTransport 2 MB L2/core, SeaStar2 through HyperTransport

Interconnect Cisco 3750 Switch SeaStar 2

0OS Sun V20z CNL

MPI MPICH, ver. 1.2.7 Vendor library

BLAS ATLAS, ver. 3.6.0 Cray libsci (Goto)

C Compiler gcc, ver. 3.2.3 pgcc (PGI)

C flags -fomit-frame-pointer -fomit-frame-pointer

-03 -funroll-loops

-03 -funroll-loops

Fortran Compiler
F flags

mpif77
-03

mpif77 (PGI)
-03

15

Table 2: Performance (in GFLOPS) of HPL (zhpl) and ScaLAPACK (xz1u).

N NB PxQ =zhpl =xzlu % Change
Organon cluster
10000 72 3 x2 209 177 17
10000 80 3x2 21.0 174 20
10000 100 3 x2 21.1 17.8 18
Jaguar
10000 72 3 x2 224 20.1 11
10000 80 3x2 226 199 14
10000 100 3 x2 227 202 12

Table 3: Example problem sizes and associated linear system dimensions

matrix dim
grid size | original new | % reduced
350 x 350 | 367,500 | 254,823 31
400 x 400 | 480,000 | 421,206 30
450 x 450 | 607,500 | 634,593 30
500 x 500 | 750,000 | 524,475 32

6 Performance results

Two sets of experiments were constructed that compare the HPL approach with ScaLAPACK subroutine
PZGESV. The first used the standard HPL benchmark system, set to size 10,000, permitting comparison
on both platforms. The results, obtained by taking the average of two identical tests, are summarized
in Table 2 . For this small test case, the HPL solver achieved better performance by 11% to 20% over
ScaLAPACK. On both machines, best results were obtained with the larger block sizes (NB), attributable
to the large cache. However, HPL shows stronger performance relative to ScaLAPACK for the middle
block size, also on both machines. Jaguar outperformed Organon in spite of its slower clock speed, which
we attribute to Jaguar’s faster interconnect.

The second set was configured within the context of large scale AORSA simulations, and thus can
only fit on a leadership class computer. Problems operated on grids of size 350 x 350, 400 x 400, 450 x
450, and 500 x 500. The latter is the largest resolution thus far simulated by AORSA. The dimensions
of the linear systems generated are shown in Table 3 including the dimensions that would have been
generated without the equation reduction strategy described in Section 3.1. Results are summarized in
Table 4.

Two MPI processes were mapped to each node, one MPI process per Opteron core. As previously

16

Table 4: Performance of ScaLAPACK and HPL for a set of ITER simulations.

modes description performance (TFlops/sec)
500 x 500 | HPL + Goto BLAS 87.5
400 x 400 HPL 69.2
350 x 350 HPL 64.6
450 x 450 ScaLAPACK 472
400 x 400 ScaLAPACK 42.6
350 x 350 ScaLAPACK 38.0

shown in Figure 1, the ScaLAPACK solver achieved good performance and scalability up to nearly
5,000 MPI processes but performance levels off on 10,000 and 20,000 processes. Using the HPL solver,
performance increased from 38 TFLOPS to 69.2 TFLOPS. The highest performance of 87.5 TFLOPS
was achieved on solving a large problem with 500 x 500 modes and replacing the vendor BLAS with the
Goto optimized BLAS [19]. As stated above, access to Jaguar is controlled through awarded allocations,
which limits our ability to test different configurations, and thus one-to-one comparisons are not always
possible. However, the trends are clear, and in fact led Cray to incorporate the Goto BLAS into their
scientific library.

To gain a better insight into why HPL is more efficient than ScaLAPACK, we ran the default HPL
driver to exercise several algorithmic options. We experimented on Jaguar to solve double precision
matrices of size 50,000 using 256 cores on a square 16 x 16 processor grid. The achieved performances
ranged from 1.13 TFLOPS to 1.26 TFLOPS. The largest improvement of nearly 10% was produced by
using look ahead versus no look ahead (note ScaLAPACK has no look ahead algorithm). Further small
improvements were gained by tuning the methods for communication and broadcast. We postulate that
the look ahead algorithm for shortening the critical path is even more effective when larger processor

configurations are used.

17

7 Summary

We have modified the High Performance LINPACK benchmark, known as HPL, to accept double pre-
cision (64-bit) complex coefficients, and have created an interface for its use by AORSA, a computer
program used to simulate current flow, heating and control of instabilities in a plasma in a fusion energy
device. The result is a significant increase in the performance of the dominant runtime computational
kernel in AORSA, the solution of the dense linear system.

These changes have resulted in an interface analogous to that provided by ScaLAPACK. In particu-
lar, the matrix is assumed to be distributed in 2D block-cyclic format, contained in ScaLAPACK defined
variables and data structures. We hope this will encourage vendors to include this capability in their li-
braries. Further, by documenting the steps involved in this conversion, we believe that the same approach
can be used to generate a float or single-precision complex version of the HPL solver.

As computing capabilities increase, enabling even greater resolution of the simulations, we con-
tinue to investigate algorithmic as well as computational improvements to this and other components
of AORSA. Future efforts may incorporate the use of mixed precision iterative solvers, where the LU
factorization is computed with reduced precision in HPL and used as a preconditioner in an iterative
method. For matrices that are not too ill-conditioned, this approach has been shown to produce signifi-

cant performance benefits [9, 2].

18

[1]

(2]

[10]

References

A.V. Aho, B.W. Kernighan, and P.J. Weinberger. The AWK Programming Language. Addison
Wesley, 1988.

S.R. Alam, R.F. Barrett, M. Eisenbach, M.R. Fahey, R. Hartman-Baker, J.A. Kuehn, S.W. Poole,
R. Sankaran, and PH. Worley. The Cray XT4 Quad-core : A First Look. In Proc. 50th Cray User
Group meeting, Helsinki, FI, May 2008.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadel-
phia, PA, 1992. Also available at www.netlib.org/lapack/lug/.

E. Anderson and J.J. Dongarra. LAPACK working note 18: Implementation guide for LAPACK.
Technical Report UT-CS-90-101, University of Tennessee, Knoxville, Tennessee, 1990. Also avail-

able at www.netlib.org/lapack/lawns/downloads/.

R. Aymar, V. A. Chuyanov, M. Huguet, and Y. Shimomura. Overview of ITER-FEAT - the future

international burning plasma experiment. Nuclear Fusion, 41(10), 2001.

R.F. Barrett, T. Chan, E.F. D’ Azevedo, E.F. Jaeger, K. Wong, and R. Wong. A complex-variables
version of high performance computing LINPACK benchmark (HPL). Concurrency and Computa-

tion: Practice and Exerience, 2009. To appear.

R.H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and MPI.
Oxford University Press, USA, 2004.

L.S. Blackford, J. Choi, A. Cleary, E.F. D’ Azevedo, J. Demmel, I. Dhillon, J.J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScalAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. Also available at

www.netlib.org/scalapack/slug/index.html.

A. Buttari, J.J. Dongarra, J. Langou, P. Luszczek, and J. Kurzak. Mixed precision iterative refine-
ment techniques for the solution of dense linear systems. International Journal of High Perfor-

mance Computing Applications, 21(4):457-466, 2007.

J. Choi, J. Demmel, 1. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK: a portable linear algebra library for distributed memory computers —

design issues and performance. Computer Physics Communications, 97(1-2):1-15, 1996.

19

www.netlib.org/lapack/lug/
www.netlib.org/lapack/lawns/downloads/
www.netlib.org/scalapack/slug/index.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Choi, J.J. Dongarra, A. Petitet, D. Walker, and R.C. Whaley. A Proposal for a Set of Parallel,
Basic Linear Algebra Subprograms (PBLAS), LAPACK working note 100. Technical Report CS-
94-239, Department of Computer Science, University of Tennessee, Knoxville, Tennessee, 1994.

Also available at www.netlib.org/lapack/lawns/downloads/.

J. Demmel, J.J. Dongarra, B. Parlett, W. Kahan, M. Gu, D. Bindel, Y. Hida, X. Li, O. Marques,
E.J. Riedy, C. Voemel, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, J. Langou, and S. Tomov.
Prospectus for the Next LAPACK and ScaLAPACK Libraries. In PARA 2006, Uma, Sweden, June
2006.

J.J. Dongarra. Performance of various computers using standard linear equation software. Technical
Report CS-89-85, Computer Science Department; University of Tennessee, Knoxville, Tennessee,

1989.

J.J. Dongarra, J. Du Croz, I. Duff, and S. Hammerling. A set of level 3 basic linear algebra subpro-
grams. ACM Trans.on Math. Soft., 16:1-17, 1990.

J.J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of Fortran basic linear

algebra subprograms. ACM Trans.on Math. Soft., 14:1-32, 1988.

J.J. Dongarra, L.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Numerical Linear Algebra for
High-Performance Computers. SIAM, Philadelphia, 1998.

J.J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: past, present and future.
Concurrency Computat.: Pract. Exper., 15:803-820, 2003. The HPL software is available at www.
netlib.org/benchmark/hpl.

J.J. Dongarra and R.C. Whaley. LAPACK working note 94: A users’ guide to the BLACS. Tech-
nical Report UT-CS-95-281, Computer Science Department, University of Tennessee, Knoxville,

Tennessee, 1997.

K. Goto and R.A. van de Geijn. Anatomy of high-performance matrix multiplication. ACM Trans-

actions on Mathematical Software, 34(4), May 2008.

E.F. Jaeger, L.A. Berry, E.F. D’ Azevedo, D.B. Batchelor, M.D. Carter, K.F. White, and H. Weitzner.
Advances in full-wave modeling of radio frequency heated multidimensional plasmas. Physics of

Plasmas, 9(5):1873-1881, 2002.

20

www.netlib.org/lapack/lawns/downloads/
www.netlib.org/benchmark/hpl
www.netlib.org/benchmark/hpl

[21] E.F. Jaeger, L.A. Berry, J.R. Myra, D.B. Batchelor, E.F. D’Azevedo, P.T. Bonoli, C.K. Philips,
D.N. Smithe, D.A. D’Ippolito, M.D. Carter, R.J. Dumont, J.C. Wright, and R.W. Harvey. Sheared
poloidal flow driven by mode conversion in tokamak plasmas. Phys. Rev. Lett., 90(19), 2003.

[22] E.F. Jaeger, R. W. Harvey, L. A. Berry, J. R. Myra, R. J. Dumont, C. K. Philips, D. N. Smithe,
R. F. Barrett, D. B. Batchelor, P. T. Bonoli, M. D. Carter, E.F. D’ Azevedo, D. A. D’Ippolito, R. D.
Moore, and J. C. Wright. Global-wave solutions with self-consistent velocity distributions in ion

cyclotron heated plasmas. Nuclear Fusion, 46(7):S397-S408, 2006.

[23] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for Fortran
usage. ACM Trans.on Math. Soft., 5:308-325, 1979.

[24] M. Lutz. Programming Python. O’Reilly Media, third edition edition, 2006.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.J. Dongarra. MPI: The Complete Reference:
Volume 1 - 2nd Edition. The MIT Press, 1998.

[26] P. E. Strazdins. A comparison of lookahead and algorithmic blocking techniques for parallel matrix

factorizations. Int. J. Parallel Distrib. Systems Networks, 4(1):26-35, 2001.
[27] R.A. van de Geijn. Using PLAPACK. MIT Press, Cambridge, MA, 1997.

[28] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly Media, third edition edition,
2000.

[29] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software. In SuperComput-
ing 1998: High Performance Networking and Computing, 1998. www.cs.utsa.edu/~whaley/

papers/atlas_sc98.ps.

21

www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps
www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps

Table 5: Additional Files list

File name Usage Remarks
Make.test Makefile for compilation of double-complex HPL and makes the | Need User Input
executable file zhpl.
Patch.sh The Master script which will call files in the folder | Need User Input
‘patch/script/’ to apply changes to existing HPL files.
Master.awk | The file contains the information for changing variable/function
names.

script/*.sh | Applying ‘master.awk’ to each file and does specific changes
in the exceptional cases.

Appendix 1: Compilation steps

The awk and shell scripts (patch.tar) is available by contacting the author at e6d@ornl.gov. The
compilation of the executable file zhpl has several steps to modify the original HPL code and re-compile

the new complex version. The detailed procedure are as follows:

1. Install the original HPL,

2. untar the patch file ‘patch.tar’ to hpl/patch, or elsewhere,

3. input correct paths on the header of patch.sh,

4. run ‘sh patch.sh’, which will unpack the extension of files for you,

5. input correct path names on header of Make . test, so Makefile will run smoothly,

6. run ‘make -f Make.test arch=UNKNOWN’ to build the executable code “zhpl”.

Table 5 describes the additional files associated with the complex HPL.

22

Appendix 2: Awk script

HHHHBHHHHBHHHBHBH B HHH R HBHHBHB B HHHFBRHH BB BHH SRR HH B HBH RSB R HH B HH
Master .awk

This file contains the information for changing the function #it#
and variable names. Hit#
BEGIN { nlines = 0;

Global Dictionary

widely used variables
name_dictionary ["MPI.DOUBLE”] = "MPIL.DOUBLE_COMPLEX";
name_dictionary ["HPL.DOUBLE”] = “HPL_DOUBLE COMPLEX”;

panel variables
"HPL_ZT_panel ”;

name_dictionary ["HPL_T_panel ’]

name_dictionary ["HPL_T_palg”] = "HPL_ZT_palg”;
name_dictionary ["HPL_S_palg”] = "HPL_ZS _palg”;
name_dictionary ["HPL_T_pmat”] = "HPL_ZT_pmat”;
name_dictionary ["HPL_S_pmat”] = "HPL_ZS_pmat”;

pfact variables
name_dictionary ["HPL_.T_.UPD_FUN”] = "HPL_ZT_.UPD_FUN";
name _dictionary ["HPL_.T_RFA_FUN”] = "HPL_ZT_RFA_FUN?”;
name _dictionary ["HPL_T_PFA_FUN”] = "HPL_ZT_PFA_FUN?”;
name_dictionary ["HPL_.S_.PANEL”] = "HPL_ZS_PANEL”;
name_dictionary ["HPL.T.TYPE”] = "HPL_ZT.TYPE”;

#testing/ptest

name_dictionary [HPL_pddriver”] = "HPL_pzdriver”;
name_dictionary [HPL _pdtest”] = "HPL_pztest”;
name_dictionary [HPL_pdinfo”] = "HPL_pzinfo”;

#testing /pmatgen
name_dictionary [”HPL_pdmatgen”] = "HPL_pzmatgen”;

23

#testing /matgen

name_dictionary [”HPL_dmatgen”] = “HPL_zmatgen”;

name_dictionary [”HPL_rand”] = "HPL_zrand”;
#include/

name_dictionary [” hpl_auxil.h”] = “hpl_zauxil.h”;

name_dictionary [”hpl_blas.h”] = "hpl_zblas.h”;

name_dictionary ["hpl.comm.h”] = “hpl_-zcomm.h"”;

src

src

name_dictionary ["hpl_gesv.h”] = “hpl_zgesv.h"”;

name_dictionary [”hpl_grid .h”] = “hpl_zgrid.h”;
name_dictionary ["hpl.h”] = ”zhpl.h”;
name_dictionary [”hpl_matgen.h”] = “hpl_zmatgen.h”;
name_dictionary [”hpl_-misc.h”] = “hpl_.zmisc.h”;
name_dictionary [hpl_panel .h”] = “hpl_zpanel.h”;
name_dictionary [” hpl_pauxil .h”] = "hpl_pzauxil.h”;
name_dictionary [”hpl_pfact.h”] = “hpl_pzfact.h”;
name_dictionary ["hpl_pgesv.h”] = “hpl_pzgesv.h”;
name_dictionary [”hpl_pmatgen.h”] = “hpl_pzmatgen.h”;
name _dictionary ["hpl_pmisc.h”] = “hpl_pzmisc.h”;
name_dictionary [” hpl_ptest.h”] = “hpl_pztest.h”;
name_dictionary [hpl_test.h”] = "hpl_ztest.h”;
name_dictionary [”hpl_units .h”] = “hpl_zunits.h”;
/auxil

name_dictionary [”HPL_dlacpy”] = "HPL_zlacpy”;
name_dictionary [”HPL_dlange”] = "HPL_zlange”;

name_dictionary [HPL _dlaprnt™]

"HPL_zlaprnt”;

name_dictionary [HPL _dlatcpy] "HPL _zlatcpy ”;

/blas

name_dictionary ["HPL.dgemmNN”] = “HPL_zgemmNN”;
name _dictionary ["HPL_.dgemmNT”] = “HPL_zgemmNT”;
name_dictionary ["HPL_.dgemmTN”] = “HPL_zgemmTN”;

name _dictionary [”HPL_dgemmTT”] = “HPL_zgemmTT”;
name_dictionary ["HPL.dgemmO”] = “HPL_zgemmO”;
name _dictionary [”HPL_dtrsmLLNN”] = "HPL_ztrsmLLNN”;

24

name_dictionary [”HPL_dtrsmLLNU "]
name_dictionary [”HPL_dtrsmLLTN]
name _dictionary [”HPL_dtrsmLLTU "]
name_dictionary [”HPL_dtrsmLUNN "]
name_dictionary [”HPL_dtrsmLUNU]
name_dictionary [”HPL_dtrsmLUTN]
name _dictionary [”HPL_dtrsmLUTU "]
name _dictionary [”HPL_dtrsmRLNN "]
name_dictionary [”HPL_dtrsmRLNU]
name_dictionary [”HPL_dtrsmRLTN]
name _dictionary [”HPL_dtrsmRLTU "]
name_dictionary [”HPL_dtrsmRUNN "]
name_dictionary [”HPL_dtrsmRUNU]
name _dictionary [”HPL_dtrsmRUTN "]
name _dictionary [”HPL_dtrsmRUTU]
name _dictionary [”HPL_dtrsm0”] =
name_dictionary [”HPL_dtrsvLNN "]
name _dictionary [”HPL_dtrsvLNU]
name _dictionary [”HPL_dtrsvLTN "]
name_dictionary [”HPL _dtrsvLTU”]
name_dictionary [”HPL_dtrsvUNN "]
name _dictionary [”HPL_dtrsvUNU]
name _dictionary [” HPL_dtrsvUTN]
name_dictionary [”HPL_dtrsvUTU "]

= "HPL_ztrsmLLNU ”;
= "HPL_ztrsmLLTN";
= "HPL_ztrsmLLTU”;
= "HPL_ztrsmLUNN”;
= "HPL_ztrsmLUNU ”;
= "HPL_ztrsmLUTN”;
= "HPL_ztrsmLUTU”;
= "HPL_ztrsmRLNN”;
= "HPL_ztrsmRLNU ”;
= "HPL_ztrsmRLTN”;
= "HPL_ztrsmRLTU”;
= "HPL_ztrsmRUNN”;
= "HPL_ztrsmRUNU ”;
= "HPL_ztrsmRUTN ”;
= "HPL_ztrsmRUTU ”;
"HPL _ztrsm0Q ”;

= "HPL_ztrsvLNN ”;
= "HPL_ztrsvLNU ”;
= "HPL_ztrsvLTN”;
= "HPL _ztrsvLTU”;
= "HPL_ztrsvUNN ”;
= "HPL_ztrsvUNU”;
= "HPL_ztrsvUTN ”;
= "HPL_ztrsvUTU ”;

name_dictionary [HPL_dtrsv0”] = "HPL_ztrsv0”;
name_dictionary ["HPL_dgemv0”] = "HPL_zgemv0”;
name_dictionary ["HPL_daxpy”] = ”"HPL_zaxpy”;
name _dictionary [”HPL_dcopy”] = "HPL_zcopy ”;
name_dictionary ["HPL.dgemm”] = “"HPL_zgemm?”;
name_dictionary ["HPL_dgemv”] = "HPL_zgemv”;
name_dictionary ["HPL_dger”] = "HPL_zger”;
name_dictionary [HPL_dscal”] = "HPL_zscal”;
name _dictionary [”HPL_dswap”] = "HPL_zswap”;
name _dictionary [”HPL_dtrsm”] = "HPL_ztrsm”;
name_dictionary [HPL_dtrsv”] = "HPL_ztrsv”;
name _dictionary [”HPL_idamax”] = "HPL_izamax”;

25

HA#HHHHHHHHHH AR HAHH AR R AR R AR R AR AR HHAH R R R R AR AR AR AR AR H AR SRR HH
NOTICE

To further extend the precisions of zHPL, need to add different
type of F77 blacs functions to it.
HARHHHHHHHHHHHHHAHHHHHAHHHHHAHHRHHAHRHHHHH R R AR AR AR AR AR AR R R R H R RS

name _dictionary [”F77daxpy”] = “F77zaxpy”;
name_dictionary [”F77dcopy”] = "F77zcopy”;
name_dictionary [’F77dgemm”] = “F77zgemm”;
name _dictionary ["F77dgemv”] = “F77zgemv”;
name _dictionary ["F77dger”] = "F77zger”;
name_dictionary ["F77dscal”] = "F77zscal”;
name _dictionary ["F77dswap”] = “F77zswap”;
name _dictionary [”F77dtrsm”] = ”F77ztrsm”;
name _dictionary ["F77dtrsv”] = "F77ztrsv”;
name_dictionary ["F77idamax”] = ”F77izamax”;

HAHHAHHH R H AR R H AR A R R R A A R R R R R

src/comm

name_dictionary ["HPL_Iring”] = "HPL_zlring”;
name_dictionary ["HPL_1rinM”] = "HPL_zlrinM”;
name_dictionary ["HPL_2ring”] = “HPL_z2ring”;
name_dictionary ["HPL_2rinM”] = “HPL_z2rinM ”;
name _dictionary ["HPL_bcast”] = "HPL_zbcast”;
name_dictionary [HPL _binit”] = "HPL _zbinit”;
name_dictionary [”HPL_blong”] = “HPL_zblong”;
name_dictionary ["HPL_blonM”] = “HPL_zblonM”;
name _dictionary [”HPL_bwait”] = "HPL_zbwait”;
name _dictionary ["HPL_copyL”] = "HPL_zcopyL”;
name_dictionary ["HPL_packL”] = “HPL_zpackL”;
name_dictionary ["HPL_recv”] = "HPL_zrecv”;

name _dictionary ["HPL_sdrv”] = "HPL_zsdrv”;

name_dictionary ["HPL_send”] = "HPL_zsend”;

subfunctions within /src/grid/x*.c

26

name_dictionary [HPL _binit_blong”] = "HPL_zbinit_blong”;

name_dictionary [HPL _bcast_blong”] = "HPL_zbcast_blong”;
name_dictionary [HPL _bwait_blong”] = “HPL_zbwait_blong”;
name_dictionary ["HPL _binit_blonM”] = "HPL_zbinit_blonM ”;
name_dictionary [HPL_bcast_-blonM”] = "HPL_zbcast_blonM ”;
name_dictionary [”HPL_bwait_blonM”] = “HPL_zbwait_blonM ”;
name_dictionary [HPL _binit_1ring”] = "HPL_zbinit_lring”;
name_dictionary ["HPL _bcast_lring”] = "HPL_zbcast_lring”;
name_dictionary [HPL_bwait_lring”] = "HPL_zbwait_lring”;
name_dictionary [HPL_binit_1rinM”] = “HPL_zbinit_1rinM ”;
name_dictionary ["HPL_bcast_1rinM”] = "HPL _zbcast_1rinM ”;
name_dictionary ["HPL _bwait_lrinM”] = "HPL_zbwait_IlrinM ”;
name_dictionary [HPL _binit_2ring”] = "HPL_zbinit_2ring”;
name_dictionary [HPL_bcast_2ring”] = "HPL_zbcast_2ring”;
name_dictionary [HPL_bwait_2ring”] = HPL_zbwait_2ring”;
name_dictionary [”HPL _binit_2rinM”] = "HPL _zbinit_2rinM ”;
name_dictionary [HPL_bcast_2rinM”] = “HPL_zbcast_2rinM ”;
name_dictionary ["HPL_bwait_2rinM”] = "HPL_zbwait_2rinM ”;
src/grid
name_dictionary [HPL _all_reduce”] = "HPL_zall_reduce”;
name _dictionary [”HPL _broadcast”] = "HPL_zbroadcast”;
name _dictionary ["HPL_max”] = "HPL_zmax”;
name_dictionary ["HPL_min”] = “HPL_zmin”;
name_dictionary [”HPL_reduce”] = "HPL_zreduce”;
name _dictionary ["HPL_sum”] = "HPL_zsum”;
src/panel
name_dictionary [HPL _pdpanel_disp”] = "HPL_pzpanel_disp”;
name_dictionary [HPL_pdpanel_free”] = "HPL_pzpanel_free”;
name_dictionary [HPL _pdpanel_init”] = "HPL _pzpanel_init”;
name_dictionary [”HPL_pdpanel_new”] = "HPL_pzpanel_new”;

src/pauxil
name _dictionary [” HPL_dlaswpOON 7]
name_dictionary [”HPL_dlaswpOIN "]
name_dictionary [”HPL_dlaswpO1T”]

"HPL_zlaswpOON ;
”HPL_zlaswpOIN ”;
"HPL_zlaswpO1T”;

27

src

src

name_dictionary [”HPL_dlaswp0O2N]
name_dictionary [”HPL_dlaswpO3N "]
name _dictionary [HPL_dlaswp03T "]
name_dictionary [”HPL_dlaswp04N]
name_dictionary [”HPL_dlaswp04T]
name_dictionary [”HPL_dlaswpO5N]
name _dictionary [” HPL_dlaswpO5T "]
name_dictionary [” HPL_dlaswpO6N]
name_dictionary [”HPL_dlaswp06T]
name_dictionary [”HPL_dlaswpl10ON]
name_dictionary [HPL _pdlange”] =
name _dictionary [” HPL _pdlaprnt”]

/pfact

name _dictionary [”HPL_dlocmax”] =
name _dictionary [” HPL _dlocswpN”]
name_dictionary [”HPL_dlocswpT”]
name_dictionary [” HPL_pdfact”] =
name_dictionary ["HPL_pdmxswp”] =
name_dictionary [”HPL _pdpancrN”]
name_dictionary [”HPL_pdpancrT”]
name_dictionary [”HPL _pdpanlIN”]
name_dictionary [HPL _pdpanllT”]
name_dictionary [”HPL_pdpanrIN”]
name_dictionary [”HPL_pdpanrlT”]
name_dictionary [HPL_pdrpancrN”]
name _dictionary [” HPL pdrpancrT”]
name_dictionary [HPL_pdrpanlIN]
name_dictionary [HPL_pdrpanllT]
name_dictionary [HPL _pdrpanrIN”]
name_dictionary [” HPL _pdrpanrlT”]

/pgesv

name_dictionary [”HPL_dgesv”] = 7
name_dictionary [HPL_pdgesv0”] =
name_dictionary [”HPL_pdgesv”] =
name_dictionary [”HPL_pdgesvKI1”]

28

= "HPL_zlaswp02N"”;
= "HPL_zlaswp0O3N";
= "HPL_zlaswp03T"”;
= "HPL_zlaswp04N"”;
= "HPL_zlaswp04T”;
= "HPL_zlaswp0O5N"”;
= "HPL_zlaswpO5T"”;
= "HPL_zlaswpO6N”;
= "HPL_zlaswp06T ”;
= "HPL_zlaswplON";
"HPL _pzlange”;

= "HPL _pzlaprnt”;

"HPL_zlocmax ”;
= "HPL_zlocswpN ”;
= "HPL_zlocswpT”;
"HPL _pzfact”;
"HPL _pzmxswp”;

"HPL _pzpancrN”;

"HPL _pzpancrT”;

"HPL _pzpanlIN”;

"HPL _pzpanllT”;

"HPL_pzpanrIN”;

"HPL _pzpanrlT”;
= "HPL_pzrpancrN”;

= "HPL_pzrpancrT?”;
= "HPL_pzrpanlIN”;
= "HPL _pzrpanllT”;
= "HPL_pzrpanrlN”;
= "HPL _pzrpanrlT?”;

HPL_zgesv”;

"HPL _pzgesv0”;
"HPL_pzgesv”;
= "HPL_pzgesvKl1”;

name_dictionary ["HPL_pdgesvK2”] = "HPL_pzgesvK2”;

name_dictionary [”HPL_pdlaswpOON”] = "HPL_pzlaswpOON”;
name_dictionary [”HPL_pdlaswp00T”] = "HPL_pzlaswp0O0T”;
name_dictionary [”HPL_pdlaswp0OIN”] = "HPL_pzlaswpOIN?”;
name_dictionary [”HPL_pdlaswp01T”] = "HPL_pzlaswpO1T”;
name_dictionary [”HPL_pdlaswp01”] = "HPL_pzlaswp01”;
name _dictionary [”HPL_pdlaswp00”] = "HPL_pzlaswp00”;
name _dictionary [”HPL _pdtrsv”] = "HPL _pztrsv”;
name_dictionary [”HPL_pdupdateNN”] = "HPL_pzupdateNN”;
name_dictionary [”HPL _pdupdateNT”] = "HPL_pzupdateNT”;
name _dictionary [”HPL _pdupdateTN”] = “HPL_pzupdateTN”;
name_dictionary [”HPL_pdupdateTT”] = “HPL_pzupdateTT”;
name_dictionary [HPL_pdupdate”] = "HPL_pzupdate”;
name_dictionary ["HPL_pipid”] = “HPL_pzipid”;
name_dictionary ["HPL _plindx0”] = “HPL_pzlindx0”;
name _dictionary [HPL_plindx10”] = "HPL_pzlindx10”;
name_dictionary [HPL_plindx1”] = "HPL_pzlindx1”;
name _dictionary [HPL_rolIN”] = "HPL_zrolIN”;

name _dictionary [HPL_rollT”] = "HPL_zrollT”;

name _dictionary [”HPL_spreadN”] = "HPL_zspreadN"”;
name_dictionary [”HPL_spreadT”] = "HPL_zspreadT”;
name_dictionary ["HPL_equil”] = “HPL_zequil ’;

miscellaneous

name_dictionary [”xhpl”] = ”zhpl”;
name _dictionary [”HPL _pdelset”] = "HPL _pzelset”;
name_dictionary [HPL_pdelget”] = "HPL_pzelget”;
}
#
wish to avoid changing /" double/
#
/" double/ {

$1 = ”_UGLY_HACK__";

29

/\ ydouble\y/ { #\y is word boundary
gsub (”\\ ydouble\\y”,” zcomplex ”);

/include “hpl.h”/ {
gsub (" hpl.h”,”zhpl.h”);

}
{
for (i in name_dictionary) {
pattern - 77\\y1’ i ”\\y”;
value = name_dictionary[i];
gsub(pattern, value);
s
#
save the input for post—processing
#
nlines = nlines + 1;
lines[nlines] = $0;
}
END {

for(i=1; i <= nlines; i += 1) {
#

undo ugly hack
#

sub (/" __UGLY_HACK__/,” double ”,

print lines[i];

30

lines[i]);

Appendix 3: List of modified files

Here is the list of files produced in the complex version of HPL. The original name is in brackets.

o Executable File: zhpl (xhpl)
e Library Archive: libzhpl.a (libhpl.a)

e hpl/include

1. hpl_ptimer.h

2. hpl_pzauxil.h (hpl_pauxil.h)
3. hpl_pzfact.h (hpl_pfact.h)

4. hpl_pzgesv.h (hpl_pgesv.h)

5. hpl_pzmatgen.h (hpl_pmatgen.h)
6. hpl_pzmisc.h (hpl_pmisc.h)
7. hpl_pztest.h (hpl_ptest.h)

8. hpl_timer.h

9. hpl_zauxil.h (hpl_auxil.h)
10. hpl_zblas.h (hpl_blas.h)
11. hpl_zcomm.h (hpl_comm.h)
12. hpl_zgesv.h (hpl_gesv.h)
13. hpl_zgrid.h (hpl_grid.h)
14. hpl_zmatgen.h (hpl_matgen.h)
15. hpl_zmisc.h (hpl_misc.h)
16. hpl_zpanel.h (hpl_panel.h)
17. hpl_ztest.h (hpl_test.h)
18. hpl_zunits.h (hpl_units.h)
19. zhplh (hpl.h)

e hpl/src/auxil

1. HPL_abort.c
2. HPL_dlamch.c

3. HPL _fprintf.c

31

HPL_warn.c
HPL _zlacpy.c (HPL _dlacpy.c)
HPL_zlange.c (HPL _dlange.c)

HPL _zlapmt.c (HPL_dlaprnt.c)

. HPL _zlatcpy.c (HPL _dlatcpy.c)

e hpl/src/blas

10.

. HPL_izamax.c (HPL_idamax.c)

HPL_zaxpy.c (HPL_daxpy.c)

. HPL_zcopy.c (HPL_dcopy.c)

HPL_zgemm.c (HPL_dgemm.c)
HPL_zgemv.c (HPL_dgemv.c)
HPL _zger.c (HPL_dger.c)

HPL _zscal.c (HPL _dscal.c)
HPL _zswap.c (HPL_dswap.c)
HPL _ztrsm.c (HPL_dtrsm.c)

HPL _ztrsv.c (HPL _dtrsv.c)

e hpl/src/comm

10.
11.
12.

. HPL_zlring.c (HPL_1ring.c)

HPL_z1rinM.c (HPL_1rinM.c)

. HPL_z2ring.c (HPL_2ring.c)

HPL_z2rinM.c (HPL_2rinM.c)

. HPL _zbcast.c (HPL_bcast.c)

HPL _zbinit.c (HPL _binit.c)
HPL _zblong.c (HPL_blong.c)
HPL_zblonM.c (HPL_blonM.c)
HPL _zbwait.c (HPL _bwait.c)
HPL _zcopyL.c (HPL _copyL.c)
HPL_zpackL.c (HPL_packL.c)

HPL_zrecv.c (HPL _recv.c)

32

13.

14.

HPL _zsdrv.c (HPL_sdrv.c)

HPL_zsend.c (HPL_send.c)

e hpl/src/grid

10.
11.

. HPL_barrier.c

HPL _grid_exit.c

HPL _grid_info.c

HPL_grid_init.c

HPL _pnum.c

HPL _zall_reduce.c (HPL_all_reduce.c)
HPL _zbroadcast.c (HPL_broadcast.c)
HPL _zmax.c (HPL_max.c)
HPL_zmin.c(HPL _min.c)

HPL _zreduce.c (HPL _reduce.c)

HPL _zsum.c (HPL_sum.c)

e hpl/src/panel

. HPL _pzpanel_disp.c (HPL_pdpanel_disp.c)

HPL _pzpanel _free.c (HPL_pdpanel_free.c)

. HPL _pzpanel_init.c (HPL_pdpanel_init.c)

HPL _pzpanel_new.c (HPL_pdpanel_new.c)

e hpl/src/pauxil

. HPL_indxg2l.c

HPL _indxg2lp.c

. HPL_indxg2p.c

HPL _indx12g.c
HPL _infog2l.c
HPL _numroc.c

HPL _numrocl.c

. HPL _pabort.c

33

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

HPL _pdlamch.c

HPL_pwarn.c

HPL _pzlange.c (HPL_pdlange.c)

HPL _pzlaprnt.c (HPL_pdlaprnt.c)

HPL _zlaswpOON.c (HPL _dlaswpOON.c)
HPL _zlaswpO1N.c (HPL_dlaswpO1N.c)
HPL _zlaswpO1T.c (HPL_dlaswpO1T.c)
HPL _zlaswp02N.c (HPL _dlaswp02N.c)
HPL _zlaswp0O3N.c (HPL _dlaswp03N.c)
HPL _zlaswpO3T.c (HPL_dlaswp03T.c)
HPL _zlaswp04N.c (HPL _dlaswp04N.c)
HPL _zlaswp04T.c (HPL_dlaswp04T.c)
HPL _zlaswp0O5N.c (HPL _dlaswpO5N.c)
HPL _zlaswpO5T.c (HPL_dlaswp05T.c)
HPL _zlaswp0O6N.c (HPL _dlaswpO6N.c)
HPL _zlaswp06T.c (HPL_dlaswp06T.c)
HPL _zlaswp10N.c (HPL_dlaswp10N.c)

e hpl/src/pfact

10.
11.
12.

HPL _pzfact.c (HPL_pdfact.c)

HPL _pzmxswp.c (HPL_pdmxswp.c)

. HPL_pzpancrN.c (HPL _pdpancrN.c)

HPL _pzpancrT.c (HPL_pdpancrT.c)
HPL _pzpanlIN.c (HPL_pdpanlIN.c)
HPL _pzpanlIT.c (HPL_pdpanliT.c)
HPL _pzpanrIN.c (HPL_pdpanrIN.c)
HPL _pzpanrlT.c (HPL_pdpanrlT.c)
HPL _pzrpancrN.c (HPL_pdrpancrN.c)
HPL _pzrpancrT.c (HPL_pdrpancrT.c)
HPL _pzrpanllN.c (HPL _pdrpanlIN.c)
HPL _pzrpanllT.c (HPL _pdrpanllT.c)

34

13.
14.
15.
16.
17.

HPL _pzrpanrIN.c (HPL _pdrpanrIN.c)
HPL _pzrpanrlT.c (HPL_pdrpanrlT.c)
HPL _zlocmax.c (HPL_dlocmax.c)
HPL _zlocswpN.c (HPL_dlocswpN.c)

HPL _zlocswpT.c (HPL_dlocswpT.c)

e hpl/src/pgesv

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

. HPL _equil.c

HPL _logsort.c

. HPL_perm.c

HPL _pzgesv.c (HPL_pdgesv.c)

HPL _pzgesv0.c (HPL_pdgesv0.c)

HPL _pzgesvK1.c (HPL_pdgesvKl.c

HPL _pzgesvK2.c (HPL_pdgesvK2.c)

HPL _pzipid.c (HPL _pipid.c)

HPL _pzlaswpOON.c (HPL_pdlaswpOON.c)
HPL _pzlaswp00T.c (HPL_pdlaswpO0T.c)
HPL _pzlaswp01N.c (HPL_pdlaswpO1N.c)
HPL _pzlaswp01T.c (HPL_pdlaswpO1T.c)
HPL _pzlindx0.c (HPL _plindx0.c)

HPL _pzlindx1.c (HPL_plindx1.c)

HPL _pzlindx10.c (HPL _plindx10.c)

HPL _pztrsv.c (HPL_pdtrsv.c)

HPL _pzupdateNN.c (HPL_pdupdateNN.c)
HPL _pzupdateNT.c (HPL_pdupdateNT.c)
HPL _pzupdateTN.c (HPL_pdupdateTN.c)
HPL _pzupdateTT.c (HPL_pdupdateTT.c)
HPL _zequil.c (HPL _equil.c)

HPL _zrolIN.c (HPL _rolIN.c)

HPL _zrollT.c (HPL_rollT.c)

HPL _zspreadN.c (HPL _spreadN.c)

35

25. HPL_zspreadT.c (HPL _spreadT.c)

e hpl/testing/matgen

1. HPL_jumpit.c

2. HPL_ladd.c

3. HPL_lmul.c

4. HPL _setran.c

5. HPL_xjumpm.c

6. HPL_zmatgen.c (HPL_matgen.c)

7. HPL_zrand.c (HPL _rand.c)

hpl/testing/pmatgen

1. HPL_pzmatgen.c (HPL_pdmatgen.c)

hpl/testing/ptest

1. HPL_pzdriver.c (HPL_pddriver.c)
2. HPL _pzinfo.c (HPL_pdinfo.c)

3. HPL_pztest.c (HPL_pdtest.c)

hpl/testing/ptimer

1. HPL_ptimer.c
2. HPL _ptimer_cputime.c

3. HPL_ptimer_walltime.c

hpl/testing/timer

1. HPL _timer.c
2. HPL_timer_cputime.c

3. HPL_timer_walltime.c

36

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1 Introduction
	2 Related Work
	3 ScaLAPACK and HPL
	3.1 The linear system in AORSA2D

	4 Conversion of HPL to complex coefficients
	4.1 Details

	5 Experimental platforms
	6 Performance results
	7 Summary
	References

